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SUMMARY 

In this report we review the history of growth theories. We show how classical growth models may be derived as special cases of a generic growth rate 
equation. We show how growth models may be modified to represent survival data. We use linear combinations of growth and survival models to represent 
complex growth/survival curves and give practical examples utilizing nonlinear regression analysis. We show that traditional methods of estimating D values 
are inappropriate for complex, multiphasic growth/survival data. We show how such data may be modeled mathematically and illustrate methods for estimating 
true D values from such data. 

INTRODUCTION 

Models for bacterial growth range in complexity from 
simple, one-term exponentials to complex, highly non-linear 
functions. Practical application of the latter to analysis of 
experimental data has been facilitated by the development 
of powerful personal computers and efficient software for 
nonlinear regression analysis. 

When bacteria are subjected to combined stress con- 
ditions, the resulting survival curves are often complex and 
multiphasic. Common methods used to enumerate survivors 
may count a population of cells recovering and growing 
upon long-term incubation on plating media but not growing 
in the actual treatment experiment. 

In this report, we review the history of growth theories. 
We discuss the generic growth rate equation from which all 
of the classic growth models may be derived as special cases. 
We show that appropriately modified growth models may 
be used to represent survival data. We show how data from 
experiments which generate subpopulations of cells may be 
modeled mathematically. 

Traditional methods of estimating D values (the time 
required to reduce a cell population 10-fold) are inappropriate 
for analysis of data from experiments in which growth or 
death are accompanied by significant lag phases or for 
experiments which generate subpopulations of cells differ- 
ently affected by treatment. We show here how data from 
such experiments may be modeled mathematically, how true 

D values may be estimated for such data, and we illustrate 
the methods with several practical examples. 

DEVELOPMENT OF MATHEMATICAL MODELS FOR 
GROWTH AND DEATH 

The history of growth theories dates back nearly 200 
years to Malthus' 'Law of geometric growth' [4]. This model 
assumes that the population grows at a rate which is 
proportional to its size at any given time. Just a few years 
later, Verhulst [11] developed the logistic equation. The 
logistic model assumes that growth is limited by the 
availability of a single essential factor. The rich history of 
subsequent literature of growth theories has been reviewed 
by Turner et al. [10] and by Turner and Pruitt [9]. 

Turner et al. [10] showed that all of the classic growth 
models are interrelated. They may be derived from a single 
parent: the generic growth rate equation: 

d x  ]3  1 n n + 
d~ = ~;x ~(k -x91 p (1) 

where x is the population size at time t. This rate equation 
contains four parameters (/3, k, n, p) which determine the 
shape of the curve. 

The generic growth model may be obtained by integrating 
Eqn (1): 

k m 

x ( l+[l+[3np(t-r) l@)~ (2) 

Correspondence to: K.M. Pruitt, University of Alabama, UAB 
Station, Birmingham, AL 35294, USA. where r is the integration constant. 
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A good model should use the minimum number of 
parameters required to give predicted values which are 
consistent with the experimental data. These parameters 
should be directly related to significant biological properties 
of the system under study. Although the generic growth 
model has only four parameters it may be utilized effectively 
in the study of many different types of systems. The 
parameters are directly related to significant properties of 
the systems [7]. The parameter /3 is the maximum specific 
growth rate which the population could attain in the absence 
of any limitations to growth. The maximum size which the 
population could attain under limited growth is given by the 
parameter k. The parameter r is related to the time at which 
the maximum specific growth rate is attained. The parameters 
n and p are related to metabolic efficiency. 

Growth models which are special cases of the generic 
model include the hyper-Gomper tz ,  hyper-logistic,  
Bertalanffy-Richards, Gompertz,  logistic and geometric 
increase curves. These models are obtained by placing 
appropriate limits or conditions on selected parameters in 
the generic curve. For example, if the population grows at 
a rate which is always directly proportional to its size, and 
there are no limiting factors, the generic curve reduces to 
the simple exponential curve. If, in addition, growth is 
limited by the availability of a single factor, the generic 
curve reduces to the logistic. 

Turner and Pruitt [9] showed that the generic growth 
model can be extended to survival curves and autocatalytic 
phenomena. Special cases of the generic growth model have 
been used to analyze a variety of experimental data [6] 
from bacterial agglutination (hyper-Gompertz),  complement- 
mediated hemolysis (hyperlogistic), and transplantable tumor 
growth (logistic). 

Mathematically, the difference between growth and death 
rates is a matter of sign. Consequently, growth curves may 
be converted to death curves by changing the sign in the 
growth rate equation. We illustrate the procedure using the 
simple exponential growth rate: 

dx 
dt /3x (3) 

Integrating between the limits (0, x0) and (t, x): 

x = x0e r (4) 

where x is the population size at any time t, xo is the initial 
size and 13 is the specific growth rate. Changing the sign 
gives a death rate: 

dx 
- dU = / 3 x  (5) 

x =xoe ~ '  (6) 

where x is the population surviving at any time t, x0 is the 
initial population and /3 is the specific death rate. The 

generic growth curve and any of the family members may 
be changed into death curves using this same procedure, 

The rate equation for simple exponential growth shows 
that the specific rate of increase is equal to a constant, /3. 
In this simple case there is no limit on growth. For death 
curves, /3 becomes the specific death rate when there is no 
limit and the initial value of x declines exponentially to 
zero. 

If the population growth rate is proportional to the 
population size and is also limited by the availability of a 
single growth factor, then the generic curve reduces to the 
logistic curve. 

The logistic growth rate is: 

dt ( k - x )  (7) 

integrating: 

k 
x (8) 

l+e-t3o-~-) 

where x is the size at time t, /3 is the maximum specific 
growth rate, k is the maximum attainable size, and r is the 
time at which x = k/2. Changing the sign gives a logistic 
death rate: 

dx 
d t  - ~ x ( k - x )  (9) 

k 
x = - -  (10) 

1 + e ~('- ") 

where x is the population surviving at time t, /3 is the 
maximum specific death rate, and r is the time at which 
x = k/2. The parameter k is related to the initial size. When 
t = 0: 

k 
Xo = (11) 

l + e - ~  

Thus, k = x 0 ( l + e  ~'). In this case death is limited by the 
amount of some stress factor or by the amount of damage 
to the cell. The maximum size in this case is the initial size 
of the cell population. Thus, the logistic curve contains 
two additional parameters (k,r)  compared to the simple 
exponential curve. 

We report here practical applications developed using the 
exponential and logistic models and/or combinations of both 
together with the assumption of subpopulations which behave 
differently and independently. In principle, the strategies 
which we use may be applied to any other members of the 
growth/death family of models. 



PRACTICAL APPLICATIONS 

Simple exponential model for destruction of bacteria 
Assume a homogeneous cell population in which the cells 

are all dying at a rate proportional to their concentration. 
Eqn (6) will describe the time course of changes in the cell 
population. If the surviving cell number (x) is divided by 
initial number (Xo), a very simple model is obtained. The 
natural log of this model yields a linear equation, and a plot 
of the natural log of the surviving fraction is a straight line 
of slope -/3 and intercept 0. 

The experimental data for survival of Listeria monocytogenes 
in milk heated at 57.8 ~ provide a good illustration of the 
application of this simple model. This experiment was part 
of a series [1] in which the heat sensitivity of L. monocytogenes 
in milk was evaluated for different pre-heat treatments and 
process temperatures. The exponential model was applied 
to the data and the natural logarithm (In) of the surviving 
fraction plotted as a function of time as shown in Fig. 1, 
panel A. 

Although the plot appears to give a good fit, there is 
clearly a systematic deviation of the data from the predicted 
line. Instead of the data being randomly distributed about 
the predicted line, the second group of four points are below 
the predicted line while the last two points are both above. 
To demonstrate the reasoning which we used in developing 
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an improved model, it is necessary to point out some 
common features of bacterial death/growth experiments. 

The usual procedure for such experiments consists of 
inoculation of bacteria from a stock culture into some 
medium which is exposed to treatment after the inoculation. 
Samples are withdrawn from the treatment medium and 
assayed for the number of viable cells. If no complications 
occur, a homogeneous cell population can be assumed 
throughout the course of the experiment. In the event of 
complications, two or more subpopulations responding 
differently to the treatment may be encountered. One 
subpopulation may be inhibited during the time course of 
the treatment, but subsequently grow during the assay. For 
example if the assay is done by spread plating aliquots from 
the treatment solution and culturing over a time period 
significantly different from the treatment time period, the 
subpopulation which was inhibited during treatment may 
recover and grow during enumeration. This would result in 
an overestimation of the number of growing bacteria in the 
treatment solution. A similar situation may occur in heating 
studies, whereby injured cells that do not grow in the test 
sample may recover and grow in the viable cell assay 
medium. 

Two-term exponential model for mixed cell population 
A simple extension of the exponential model would be 

to assume that there are two populations of bacteria which 
differ in their sensitivity to heat and therefore die at different 
rates. The model is illustrated as follows: 
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Fig. 1. Survival curves for L. monocytogenes heated in bovine milk at 57.8 ~ Aliquots were pipetted into sterile ampules and placed in 
a 57.8 ~ bath. Samples were removed at the indicated times and serially diluted. Survivors were enumerated by spread plating on tryptic 
soy-yeast extract agar and incubating for 48 b at 35 ~ The plotted points are means of at least 14 observations. Vertical bars represent 
plus or minus one standard deviation. The line in panel A is the predicted curve based on fitting the data to Eqn (6) and in panel B to 

Eqn (14) using nonlinear regression [8]. Adapted from [1]. 
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S =fe-~d + (1-f)e-t32 t (13) 

where: 

S = fraction of total survivors (X/Xo) at time = t, 
f = fraction of survivors in population 1 

(heat-sensitized), 
( l - f )  = fraction of survivors in fraction 2 (less heat-sensitized), 
/31 = specific death rate of subpopulation 1, and 
/32 = specific death rate of subpopulation 2. 

Taking the natural logarithm of both sides of Eqn (13): 

In(S) = l n [ f e - & % ( 1 - f ) e - & ' ]  (14) 

The surviving fraction S is made up of two subpopulations. 
The fraction dying at specific rate ]31 is represented by f 
and the fraction dying at rate /32 is represented by ( l - f ) .  
In Eqn (14), the simplicity of the single-term exponential 
equation is lost and linear regression can no longer be 
applied to the model. However, nonlinear regression can be 
easily applied using commercially available PC programs, 
such as BMDP software packages. The data obtained from 
thermal destruction studies of L. monocytogenes heated at 
57.8 ~ were fitted to this model. The results of In vs time 
presented in Fig. 1, panel B, were obtained by nonlinear 
regression using the BMDP program. 

These are the same data which were analyzed by the 
one-term exponential model. There are two features of Fig. 
1B which are worth noting. First, the predicted curve drops 
very sharply from the initial data point, reflecting an initial 
rapid death of a more heat-sensitive subpopulation. The 
second feature is that the observed data points are very 
close to the predicted line and are randomly distributed on 
either side. This is in contrast to the apparent systematic 
deviation of observed mean values from the predicted line 
using the one-term exponential model in Fig. 1A. In the 
latter case, the first four points were all below the predicted 
line and the last two were above. The parameter estimates 
for these two models are compared in Table 1. Clearly the 
two-term exponential gives a better fit to the data. The 

residual sum of squares is significantly lower for the two- 
term model as would be expected. Also the pseudo r 2 is 
significantly higher for the two-term model. The/31 estimates 
are very interesting. The one-term model predicts a specific 
death rate of 0.621 for the entire population. The /31 for 
the two-term model could not be estimated by linear 
regression since the routine estimated very high values. In 
order to get convergence, a value of 100 was inserted. Since 
/31 o c c u r s  as an exponential, raising 'e '  to a power of 
( -100  t) gives a result which is essentially zero for any value 
of t other than zero. This implies that the more heat- 
sensitive fraction is killed instantly. If this is true, then all 
of the data at points other than t = 0 should be consistent 
with the following equation: 

In(S) = ln [ (1 - f ) e  /32t] (14A) 

Eqn (14A) is identical to Eqn (14) except that the fe t31' 
term has been omitted. Regression analysis with Eqn (14A) 
g a v e l  = 0.193 (SD 0.031) and/32 = 0.523 (SD 0.031). These 
values are not significantly different from those (Table 1) 
obtained from regression with Eqn (14) with /3, = 100. 

The surviving, less heat-sensitive fraction dies at a specific 
rate of 0.522 which is significantly less than the value 
predicted by the one-term model. The death of the heat- 
sensitive fraction (0.19) results in an instant reduction of 
the inoculum in the untreated milk from 1 x 106 CFU m1-1 
to 0.8 x 106 CFU ml t. The difference in these two numbers 
is of no practical consequence. However, if some additional 
stress is introduced, the heat-sensitive fraction may be 
significantly increased. 

The effect of an additional stress is demonstrated by the 
results obtained after exposure of bacteria to the activated 
lactoperoxidase system followed by heating. The lactoperoxi- 
dase (LP) system is a natural defense mechanism found in 
bovine milk and other exocrine secretions review [5]. The 
lactoperoxidase enzyme is a normal component of bovine 
milk. It will catalyze the peroxidation of thiocyanate (SCN-)  
to generate oxidized forms of SCN- which are toxic to many 
species of microorganisms. The LP system may be activated 
by supplementing milk with small amounts of SCN- and 
hydrogen peroxide [1-3]. 

TABLE 1 

Survival parameter estimates a for L. monocytogenes min milk at 57.8 ~ 

Pretreatment Model Residual Pseudo r 2 /31 (SD) 
sum of min 1 
squares 

/3 2 (SD) 
min 

Fraction 
with 131 
(SD) 

None one-term 0.0699 0.970 0.621 
equation (12) (0.023) 

None two-term 0.0169 0.993 >100 
equation (14) 

Activated LP two-term 0.0491 0.998 >100 
system equation (14) 

0.522 
(0.028) 
3.75 

(0.14) 

aDetermined by nonlinear regression [8]. Adapted from [1]. 

1(--) 

0.193 
(0.044) 
0.899 

(0.010) 



The effects of the activated LP system on the survival of 
L. monocytogenes in heated milk are shown in Fig. 2. In 
presence of the LP system, the fraction of survivors dropped 
by three log cycles within the first 0.2 rain. This was a 
dramatic difference from the control where the LP system 
was not activated. In the control, there was less than one 
log cycle drop within the first two minutes, whereas the 
drop was more than 6 log cycles in presence of the LP 
system. The reasons for these differences are apparent from 
a comparison of the parameter estimates shown in Table 1. 
The residual sum of squares and the pseudo r 2 values show 
that Eqn (14) fits both data sets very well. (Estimates of f 
and of /32 obtained from using Eqn (14A) were not 
significantly different from those listed in Table 1.) In both 
cases the heat-sensitive fraction is killed almost instantly. 
Furthermore, the survivors in presence of the activated LP 
system died at a specific rate which was nearly 8-fold higher 
than that observed in the control. 

The two-term exponential model clearly reveals that the 
activated LP system increased the more heat-sensitive fraction 
to 90% compared to 19% in the control. The death of the 
heat-sensitive fraction (0.90) results in an instant reduction 
of the inoculum from 1 • 106 CFU ml 1 to 1 x 10 s CFU 
m1-1. If the data from the latter experiment had been 
analyzed using a one-term exponential, the results would 
have applied to only 10% of the inoculum. Similar effects 
are observed when other combined methods of food preser- 
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Fig. 2. Survival curves for L. monocytogenes heated in bovine milk 
at 57.8 ~ (filled circles) and in bovine milk with the activated 
lactoperoxidase system (filled triangles). Samples were removed at 
the indicated times and serially diluted. Survivors were enumerated 
by spread plating on tryptic soy-yeast extract agar and incubating 
for 48 h at 35 ~ The plotted points are means of at least 14 
observations. Vertical bars represent plus or minus one standard 
deviation. The lines are the predicted curves based on fitting the 
data to Eqn (14) using nonlinear regression [8]. Adapted from [1]. 
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vation are used. Examples include the use of irradiation and 

heat (thermoirradiation), acidification and heat, and other 
food additives followed by secondary processes. 

Logistic models for  destruction o f  bacteria 
The results described above illustrate a practical appli- 

cation of the simple exponential decay curve. In the 
exponential models, each subpopulation of cells dies at a 
rate which is proportional to the subpopulation size at any 
time. There is no apparent limiting factor for killing and no 
initial lag in killing. If there is a lag in killing, then the 
survival curves are more complex, and the simple exponential 
model will give a poor fit to the data. Logistic models may 
be used to analyze data from these complex survival curves 
for homogeneous as well as heterogeneous cell populations. 
In terms of the surviving fraction S for a homogeneous cell 
population, Eqn (11) may be written as: 

l + e - ~  ~ 
S = (15) 

where S = X/Xo = fraction surviving at any time t, /3 = 
maximum specific death rate, and r is a measure of lag in 
killing. An example of data consistent with Eqn (15) is 
given in Table 2 for L. monocytogenes heated in milk at 
55.2 ~ The LP system reduced the value of r from 16.6 
to 3.2 rain. 

If there is no lag, r - 0 and Eqn (15) may be written: 

2 
S - (16) 

1 + e t3t 

An example is given in Table 2 for L. monocytogenes heated 
in milk at 52.2 ~ Activation of the LP system abolished 
the lag (r = 0) in killing. 

If there are two cell populations, and each subpopulation 
responds independently: 

s - f [ l + e - & ~ q  q (1-f)[1+e-132~2] 
(17) 

l+et~l('-q) 1 +e132( t ~2) 

where f = fraction of population with/3 = /31 and ( l - f )  = 
fraction of population with /3 = /32. 

If there are no lags, rl and r2 = 0 and Eqn (17) may be 
written: 

S - 2f 2(1 - f )  
- -  ( 1 8 )  

1 + e& (0 1 + e / 3 2  ( t )  

Parameter estimates (Table 3) based on data for Staphylococ- 
cus aureus heated in milk at 55.2 ~ after activation of the 
LP system were consistent with Eqn (18). The more heat- 
sensitive fraction (0.92) dies almost instantly. 

D value calculation for logistic survival curves 
A parameter commonly used by microbiologists to meas- 

ure heat sensitivity is the decimal reduction time (D value) 
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TABLE 2 

Survival parameter estimates a for L. monocytogenes in milk 

Pretreatment Temp. ~ r (SD) /3 (SD) Logistic 
min rain -~ D value 

'Decimal 
Reduction 
Time 'a 

None 52.2 42.0 0.0690 74.7 b 52.2 
(2.1) (0.008) 

Activated LP system 52.2 0 0.188 15.7 c 19.1 
(0.0O8) 

None 55.2 16.6 0.244 25.7 b 14.8 
(1.2) (0.032) 

Activated LP system 55.2 3.2 1.22 5.0 ~ 3.0 
(0.3) (0.14) 

aDetermined by fitting the data to Eqn (15) by nonlinear regression [8]. Adapted from [1]. 
bCaleulated from Eqn (19). 
cCalculated from D = 2.94//3. 
dCalculated from D = 3.6//3. 

TABLE 3 

Survival parameter estimates a for S. aureus heated in milk 

Pretreatment Temp. ~ ( l - f )  132 (SD) - /31 - most Logistic 'Decimal 
least least heat- D2 value c Reduction 
heat- heat- sensitive min Time 'a 
sensitive sensitive fraction 
fraction fraction min 1 

min 

None 52.2 1.0 0.0600 - -  49.1 60.0 
(0.0012) 

Activated LP 52.2 1.0 0.920 - -  3.2 3.9 
system (0.029) 
None 55.2 1.0 0.264 - -  11.1 13.6 

(0.089) 
Activated LP 55.2 0.0800 1.840 >100 ~ 1.60 1.96 
system (0.360) 

aDetermined by fitting the data to Eqn (18) using nonlinear regression [8]. Adapted from [1]. 
bThe value of/3j was too high to be estimated. This means that the most sensitive fraction, 0.92 was 
killed almost instantly, o r  D 2 = 0. 
~ as 1n(19)//32. 
aCalculated as 3.6//32. 

defined as the  t ime requi red  to reduce  a given cell popula t ion  

10-fold unde r  specified condit ions.  
The  D value is usually repor ted  as the  absolute  value  of 

the reciprocal  of the  slope of a plot  of Logl0S vs time. If 

the plot is no t  l inear ,  D is measu red  f rom the  ' l inear '  por t ion  
of the  curve. The  ' l inear '  por t ion  of the logistic curve occurs 

at r, which is the  point  of inflection. The  slope at this point  

is given by -/3/4.  Since the  D value is the  t ime to reduce  

the  survivors 10-fold, then:  

Slope at t -  ~" = AS~At = - /3 /4  

If AS = 0.9, then  At = D and  

D = (0.9 • 4)/fl = 3.6//3 

Calcula ted  'Dec imal  Reduc t ion  Times '  are l isted in Table  

2 for L.  m o n o c y t o g e n e s  survival  curves in hea t ed  milk. 
'Dec imal  Reduc t ion  Times '  es t imated  in this way do not  

take into account  any lag in killing or any he te rogene i ty  in 

cell response.  There fore ,  for survival da ta  which show a lag 
or are he te rogeneous ,  these  D values do no t  give a t rue  

es t imate  of the t ime requi red  to effect a 10-fold reduct ion  
in cell popula t ion.  A be t te r  es t imate  of the  D value for 
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logistic survival curves can be obtained by using the parameter 
estimates to calculate the time at which S = 0.1. By definition 
this time is the true D value. 

For a population of identical cells dying at the same rate, 
with no initial lag in death, the D value may be obtained 
by substituting S = 0.1 and t = D in Eqn (16) and solving 
for D. The result is D = 2.94///3. The 'Decimal Reduction 
Time' as calculated above is given by D = 3.6//3. Therefore, 
for the same survival curve when r = 0, logistic D values 
will always be less than the 'Decimal Reduction Time'. An 
example is given in Table 2 for heating L. monocytogenes 
in milk at 52.2 ~ with the activated LP system. The logistic 
D value was 15.7 rain and the 'Decimal Reduction Time' 
was 19.1 min. 

For a population of identical cells with an initial lag 
(r > 0) in death, the D value can be calculated by substituting 
S = 0.1 and t = D in Eqn (15) and solving for D. The result 
is: 

ln(9+ 10e -~t) 
D = r + (19) 

/3 

These calculations are illustrated in Table 2 for L. monocyto- 
genes heated in milk at 52.2 ~ and 55.2 ~ and with 
activation of the LP system at 55.2 ~ In each instance, the 
logistic D value is significantly greater than the 'Decimal 
Reduction Time' because the latter does not take into 
account the lag in killing. 

When there are two subpopulations of cells dying 
independently at different rates, with no lag in death (r = 0), 
D values for the two subpopulations can be estimated by 
substituting r = 0 and the appropriate /3 values into Eqn 
(19). The results are: 

D1 = ln(19)//31 
D2 -- ln(19)//32 

The data for thermal destruction of S. aureus at 55.2 ~ in 
the presence of the LP system demonstrated this behavior 
and were consistent with Eqn (18). Parameter estimates are 
listed in Table 3. Most of the cell population (f = 0.92) was 
killed almost instantly (D1 = 0). The remaining fraction 
(0.080) had a Dz value of 1.6 min. However, the latter value 
is not representative of the cell population as a whole 
because it contains such a small fraction of the total 
population. 

Mixed cell response: lag, death, recovery and growth 
It may happen that a cell culture is only partially damaged 

and/or recovers from damage during the course of sample 
storage and resumes growth. This mixed response may be 
observed when using antibacterial substances that are both 
bactericidal and bacteriostatic. Cell populations treated with 
such substances may show subsequent cell recovery and 
growth of surviving cells. An appropriate model must take 
into account growth, inhibition (lag), and death. 

For a homogeneous population of cells growing at a rate 
which is jointly proportional to cell concentration and to 
the concentration of a single growth-limiting factor, the 
logistic model, Eqn (8), is appropriate. The cells continue 
to grow until the growth factor supply is exhausted and they 
reach a maximum population k. The parameter /3 is the 
maximum specific growth rate at which growth would be 
observed with excess growth factor. The time at which 
growth reaches k/2 is r. As an example of the application 
of this equation, data which were collected for the growth 
of S. aureus in raw milk at 37 ~ are used [2]. The data 
were clearly consistent with Eqn (8) as shown in Fig. 3. 

When the LP system was activated in milk, there was an 
initial decline in cell number followed by recovery and 
growth to the same final level. It seems that there is some 
initial killing of cells by the LP system. Therefore, we used 
the following model: 

k 
X --  q_ Xdying e ~t (20) 

l+e-~(t-~) 

w h e r e  Xdying is the part of the subpopulation fatally damaged 
by the activated LP system, a is the specific death rate 
constant, and the other parameters have the same meaning 
as before. The first part of the model assumes logistic 
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Fig. 3. Growth of S. aureus in bovine milk at 37 ~ (filled triangles) 
and in milk with the activated lactoperoxidase system (filled circles). 
Samples were removed at the indicated times and serially diluted. 
Survivors were enumerated by spread plating on tryptic soy-yeast 
extract agar and incubating for 48 h at 32 ~ The plotted points 
are means of at least four observations. Vertical bars represent plus 
or minus one standard deviation. The lines are the predicted curves 
based on fitting the data to Eqn (8) for milk and Eqn (20) for the 
activated LP system using nonlinear regression [8]. Adapted from 

[2]. 
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Fig. 4. Growth of L. monocytogenes at 35 ~ in bovine milk (filled 
triangles) and in milk with the activated lactoperoxidase system 
(filled circles). Samples were removed at the indicated times and 
serially diluted. Survivors were enumerated by spread plating on 
tryptic soy-yeast extract agar and incubating for 48 h at 32 ~ The 
plotted points are means of at least four observations. Vertical bars 
represent plus or minus one standard deviation. The lines are the 
predicted curves based on fitting the data to Eqn (8) for milk and 
Eqn (21) for the activated LP system using nonlinear regression 

[8]. Adapted from [2]. 

growth. The data were consistent with this model, as shown 
in Fig. 3. 

Nonlinear least-squares parameter estimates for the data 
plotted in Fig. 4 are listed in Table 4. The dying fraction 
represents 94% of the cells initially present, which is not 
obvious from the chart. The specific death rate is 0.34 h -1. 
However, the standard deviation is quite large indicating a 
lot of 'floppiness' in this number. This is due to the relatively 

TABLE 4 

Parameter estimates" for S. aureus milk at 37 ~ 

Pretreatment Dying Specific Maximum Time at 
fraction death specific which 
(SD) rate, a growth x = k/2, 

(SD) h 1 rate, 7 (SD) h 
(SD) h -1 

Control 0 0 1.30 8.22 
(O.O6) (O.O6) 

Activated 0.946 0.34 1.49 10.3 
peroxidase (0.29) (0.57) (0.21) (0.6) 

aAdapted from data reported in [2]. Data were fitted to Eqn (20) 
by nonlinear regression [8]. 
bCalculated by dividing the inoculum size into the population of 
dying cells, Xdy~ng, as estimated from fitting Eqn (20) to the data. 

few observations available in the early part of the curve 
where dying cells are making the greatest contribution to 
changes in cell population. Although 94% of the inoculum 
is so damaged by the LP system that these cells ultimately 
die, the survivors recover and grow at a rate comparable to 
that of the control. The maximum specific growth rates 
for survivor and control populations are not significantly 
different. We call them 'maximum' because they represent 
the specific growth rate in the absence of any limiting 
factors. The data show that the cells which survived the LP 
system were unimpaired. The LP system increases the value 
of r by 2 h. However, this effect is primarily due to the 
initial reduction in the numbers of viable cells. 

As a final example, the effects of the LP system on the 
growth of L.  monocy togenes  in milk at 35 ~ are presented 
in Fig. 4. The period of delayed growth when the LP system 
was activated was more extended for these organisms 
compared to S. aureus. The model which was used for the 
S. aureus would not fit these data. The addition of exponential 
killing did not satisfactorily explain the extended period of 
no growth. In this case an assumption was made that there 
was a subpopulation of cells which were inhibited by the 
LP system and showed no growth during the experiment, 
but they were able to recover and be counted during the 
48-h plating assay. The model assumed was as follows: 

k - x r e c o v e  r 
X = X . . . . . . .  + + X d y i n g e  - a t  (21) 

l + e  t3(t ~) 

The x . . . . . . .  is the population of cells which show no growth 
during the experiment but do recover and grow during the 
plating assay. The effect of this term is to add a constant 
number to the colony counts observed during plating. 
The second term represents the surviving, non-inhibited 
subpopulation which grows during the experiment. The 
numerator, k-xrecover, in the second term insures that k 
represents the ultimate cell population which will be reached. 
The last term represents the subpopulation which is so 
damaged by the peroxidase system that it dies exponentially 
during the treatment period. The other parameters have the 
same meanings as before. The data for samples with activated 
LP system were analyzed using nonlinear regression of this 
model and the results are shown in Fig. 4 and Table 5. 

(The data plotted in Fig. 4 are means of four or more 
observations for each time point. However, the data were 
collected at only eight time points. Eqn (21) has five 
adjustable parameters (x . . . . . . . .  /3, T, Xdying , and a). With 
so many parameters for so few time points, the question 
arises as to whether or not fitting Eqn (21) to these data is 
merely an exercise in curve-fitting rather than modeling. 
We address this question in the Appendix.) 

The predicted line in Fig. 4 agrees precisely with the 
data. The sharp initial drop is predicted by the model as 
well as the extended period of little or no change in cell 
population. A comparison of the parameter estimates for 
the control and the treated samples (Table 5) reveals 
some interesting relationships. The recovering fraction (that 
fraction which is inhibited during the experiment but is able 



TABLE 5 

Parameter estimates a for L. monocytogenes milk at 35~ 

Pretreatment Recovering Dying Specific Maximum Time at 
fraction b fraction c death specific which 
(SD) (SD) rate, c~ growth x = k/2, 

(SD) h -1 rate, r (SD) h 
(SD) h -1 

Activated LP 0.47 0.53 4.06 1.05 16.4 
system (0.02) (0.08) (1.35) (0.03) (0.1) 
Control 0 0 0 0.69 11.1 

(0.05) (1.0) 

~Adapted from data reported in [2]. Data were fitted to Eqn (21) by nonlinear regression 
[81. 
bCalculated by dividing the inoculum size into the population of recovering cells, x ........ 
as estimated from fitting Eqn (21) to the data. 
CCalculated by dividing the inoculum size into the population of dying cells, %oy~,g, as 
estimated from fitting Eqn (21) to the data. 
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to recover and be counted during the plating assay) and the 
dying fraction together constitute nearly all of the initial 
population of cells. The specific death rate ((~) for the 
damaged population is very high. It is interesting that the 
maximum specific growth rate of the few unaffected survivors 
in the activated peroxidase sample is significantly greater 
than that of the control population. In other words, the few 
cells which survive the peroxidase system and go on to grow 
do so more vigorously than the untreated controls. Why this 
should be so is not clear at the present time. The time, r, 
required for the population to reach half of the maximum 
level is extended by 4 h in the activated peroxidase sample. 

This extension is due primarily to the very small number of 
cells which are able to recover and grow. This number may 
be calculated as follows. 

The second term in Eqn (21) represents the population 
of unaffected cells in the sample where the LP system was 
activated. 'Unaffected' means that the cells were neither 
inhibited nor fatally damaged by the activated LP system. 
The measured cell population at t = 0 in the LP activated 
experiment was 28 000 CFU. This population grew to a final 
level of 5.36 • 107 CFU. The latter number is the value of 
k in Eqn (21). Using this number and setting t = 0,/3 = 1.05, 
r = 16.4 (from Table 5) we may calculate from the second 
term in Eqn (21) the population of unaffected cells initially 
present. The result shows that of the initial 28000 CFU, 
there were only 1.8 unaffected CFU remaining. Thus, the 
activated LP system essentially, but not quite, wiped out 
the inoculum. However, even though only a few viable cells 
remained, they are able to recover and to grow vigorously. 
This analysis reveals that for this organism, under these 
experimental conditions, a complete extinction of the inocu- 
lure is required to prevent subsequent growth. 

CONCLUSION 

The time course of complex changes in cell populations 
can be modeled effectively using the strategies presented 
here, Growth and death may both be modeled separately 
or in combination. The division of the total cell population 
into subpopulations responding differently and independently 
to the treatment seems to be a useful approach. Commercially 
available software implemented on a personal computer may 
be used effectively to carry out nonlinear regression with 
these models. The values of parameter estimates obtained 
from this method may yield insights into destructive mechan- 
isms which are not immediately apparent from inspection of 
the raw data or from linear regression analyses of log CFU 
vs time plots. Although the examples given here used the 
simple exponential and logistic models, the same strategy 
may be used with more complex members of the growth/ 
death family. 
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This model assumes that the cell population consists of two 
fractions behaving differently and independently. The first 
term in Eqn (2A) describes the behavior of that fraction 
which is growing logistically at a specific growth rate /3 and 
which will reach �89 of its maximum size (k) when t = r~. The 
second term describes the behavior of that fraction (Xdying) 
which is dying logistically at a specific rate a. For this 
fraction, �89 of the cells will have died when t = r~. 

We fitted the data plotted in Fig. 4 to Eqn (2A) using 
nonlinear regression [8]. For comparative purposes, the 
relevant statistics are: 

Model Mean squared error r 2 
Eqn (21) 0.001012 0.9995 
Eqn (2A) 0.001984 0.9990 

APPENDICES 

Model ing  or curve-fitting? 

We consider 'modeling' to be the fitting of experimental 
data to a mathematical expression whose parameters have 
plausible relationships to the biological properties of the 
system upon which the data are based. We consider 'curve- 
fitting' to be the fitting of experimental data to a mathematical 
expression whose parameters have no meaningful relation- 
ships to the biological properties of the system under study. 
Since the biological significance of the five adjustable 
parameters in Eqn (21) is plausible, we consider the fitting 
of the data to this equation as modeling. 

Although we have not carried out the exercise, the data 
could probably be accurately represented by a polynomial 
such as: 

x = ao + alt  + a2 t2 + a3 t3 + a4/4 (1A) 

where the parameters a0, a~, a2, a3, a4 may be positive, 
negative, or zero. With the exception of a0 (the value of x 
at t = 0), these parameters have no obvious relationships to 
the biological properties of the system. In our view, fitting 
Eqn (1A) to the data would be 'curve-fitting'. 

However, fitting Eqn (21), with its five parameters, to a 
data set composed of only eight time points raises the 
question of uniqueness for this particular model. Would 
another model with five parameters having plausible relation- 
ships to biological properties fit the data equally as well? 
To explore this issue, we used the following model: 

k X = @ Xdying (2A) 
1 +e-tS(t-~) l+e~(t -~)  

The mean squared error was nearly twice as great for Eqn 
(2A) as for Eqn (21). However, the r 2 values for the two 
models were not significantly different. Parameter estimates 
are compared below: 

Model Parameter Estimate C N  b 

Eqn (21) 

Eqn (2A) 

X . . . . . . .  a 0.471 5.0 
Xdying a 0. 529 14.5 
a 4.06 33.3 
/3 1.05 2.5 
r 16.4 0.7 
Xdying a 0.420 783 
a 0.266 404 
% 17.0 653 
/3 1.18 21.0 
r e 16.7 26.7 

aFraction of the inoculum 
bCoefficient of variation = 
deviation/parameter estimate. 

100 x asymptotic standard 

The coefficients of variation for the parameters Xdying , a, 
and r~ of Eqn (2A) are many fold greater than the parameter 
estimates themselves. Thus, there is great uncertainty about 
these parameter estimates. For the parameters /3 and r 8 of 
Eqn (2A), the coefficients of variation are an order 
of magnitude greater than those for the corresponding 
parameters /3 and r of Eqn (21). Therefore, although 
regressions using either equation give acceptable values of 
r 2, the parameter estimates for Eqn (21) are much more 
sharply defined than are those for Eqn (2A). 

The uncertainty associated with parameter estimates from 
Eqn (2A) may be attributed to the high correlations among 
the parameters. Asymptotic correlation matrices for both 
models are given below. 



Xrecover 

Xdying 

OL 

T 

Xdying 

OL 

Ta 

/3 
% 

Xrecover 

1 
-0.303 

0.448 
0.283 

-0.205 

Xdying 

1 
0.977 
0.992 

-0.984 
-0.905 

EQUATION (21) 
Xdying O~ 

1 
-0.095 1 1 
-0.0867 0.130 -0.929 1 

0.060 -0.0911 

EQUATION (2A) 

1 
0.942 1 

-0.925 -0.998 1 
-0.974 -0.843 0.815 
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These matrices show that for Eqn (21) only the parameter 
estimates for/3 and z are highly correlated, but that for Eqn 
(2A) all of the parameter estimates are highly correlated. 
Therefore, we conclude that Eqn (21) is the better model. 

We have no additional, independent experimental obser- 
vations to confirm the assumptions leading to Eqn (21). 
Although the above analyses do not prove that Eqn (21) 
represents a true, unique model for the biological events 
underlying the observations, they do establish that fitting 
the data to Eqn (21) is an exercise more akin to modeling 
than to curve-fitting. 


